The Impossibility of Certain Types of Carmichael Numbers

نویسنده

  • Thomas Wright
چکیده

This paper proves that if a Carmichael number is composed of primes pi, then the LCM of the pi − 1’s can never be of the form 2 and can be of the form 2 ∗P for only four prime values of P ≤ 127. Moreover, if the LCM of a Carmichael number is 2 ∗ P and a Carmichael number m has all of its Fermat prime factors among the five known Fermat primes, then P must be one of the four possibilities mentioned above, and m can take one of only eight possible values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pseudoprimes to 25 • 109

The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Carmichael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several...

متن کامل

Higher - Order Carmichael Numbers Everett

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indic...

متن کامل

Higher-order Carmichael numbers

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indica...

متن کامل

1 99 8 Higher - Order Carmichael Numbers Everett

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indic...

متن کامل

On Carmichael Numbers with 3 Factors and the Strong Pseudoprime Test an Odd Composite Integer N Is a \carmichael Number" If a N a Mod N for All Integers A. It Is a \3-factor

| The well known \strong pseudoprime test" has its highest probability of error (1=4) when the numbers being tested are certain Carmichael numbers with 3 prime factors. We present a non-rigorous plausibility argument that the count C3 (x) of 3-factor Carmichaels up to x, is asymptotically C3(x) K x 1=3 (ln x) ?3 where K 478 110 is an absolute constant given by K = 3 3 X 1a<b<c 1 (abc) 4=3 Y p F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008